Citric Acid Cycle

Cycle Overview Metabolic Sources of Acetyl-Coenzyme A Enzymes of the Citric Acid Cycle Regulation of the Citric Acid Cycle The Amphibolic Nature of the Citric Acid Cycle

Cycle Overview

(citric acid or Krebs or tricarboxylic acid cycle)

Amphibolic - operates catabolically and anabolically

acetyl group $\rightarrow 2CO_2$

Reactions of the cycle:

- 1. Citrate synthase
- 2. Aconitase
- 3. Isocitrate dehydrogenase
- 4. α-Ketoglutarate dehydrogenase
- 5. Succinyl-CoA synthase
- 6. Succinate dehydrogenase
- 7. Fumarase
- 8. Malate dehydrogenase

 $3NAD^{+} + FAD + GDP + P_i + acetyl-CoA \rightarrow$

```
3NADH + FADH_2 + GTP + CoA + 2CO_2
```

Cycle operates catalytically as a result of regeneration of oxaloacetate

Acetyl-Coenzyme A (acetyl-SCoA or acetyl-CoA) common product of carbohydrate, fatty acid and amino acid breakdown (ΔG° ' = -31.5 kJ·mol⁻¹)

Metabolic Sources of Acetyl-Coenzyme A

 $Pyruvate + CoA + NAD^{+} \rightarrow acetyl-CoA + CO_{2} + NADH$

Pyruvate dehydrogenase multienzyme complex pyruvate dehydrogenase (E₁) dihydrolipoyl transacetylase (E₂) dihydrolipoyl dehydrogenase (E₃)

Eukaryotic complex - 30 E_1 dimers + 6 E_3 dimers around a core of 60 E_2 monomers

Advantages of multienzyme complexes:

- 1. Rate enhancement due to shorter distances for diffusion of substrates
- 2. Channeling of intermediates, minimized side reactions
- 3. Coordinate control of reactions

Five cofactors required: thiamine pyrophosphate (TPP) lipoic acid coenzyme A (CoA) flavin adenine dinucleotide (FAD) nicotinamide adenine dinucleotide (NAD⁺)

Metabolic Sources of Acetyl-Coenzyme A

Pyruvate dehydrogenase multienzyme complex

Five reactions:

- 1. Pyruvate dehydrogenase (E₁) decarboxylates pyruvate (identical to pyruvate decarboxylase)
- 2. Hydroxylethyl group transferred to E_2
- 3. E_2 catalyzes transfer (transesterification) of acetyl group to CoA
- Dihydrolipoyl dehydrogenase (E₃, lipoamide dehydrogenase) reoxidizes dihydrolipoamide (similar to glutathione reductase reaction in reverse)
- 5. Reduced E_3 reoxidized by NAD⁺

Metabolic Sources of Acetyl-Coenzyme A

Pyruvate dehydrogenase multienzyme complex

Dihydrolipoyl transacetylase (E₂):

lipoyllysyl tether allows one E_1 subunit to acetylate many E_2 subunits and one E_3 subunit can reoxidize several dihydrolipoamide groups

Arsenic compounds covalently bind sulfhydryl groups, inactivates lipoamide-containing enzymes (pyruvate dehydrogenase and α -ketoglutarate dehydrogenase)

Protein X - facilitates binding of dihydrolipoyl dehydrogenase (E_3)

Control of Pyruvate Dehydrogenase

Pyruvate dehydrogenase (E₁)

Product inhibition by NADH and acetyl-CoA

NADH and acetyl-CoA compete with NAD⁺ and CoA Drive reversible E_2 and E_3 reactions backwards

Covalent modification by phosphorylation/dephosphorylation

pyruvate dehydrogenase kinase - inactivates E_1 subunit by phosphorylating Ser residue pyruvate dehydrogenase phosphatase -reactivates E_1 subunit by dephosphorylating Ser residue

Citrate synthase

 $acetyl\text{-}CoA + oxaloacetate \rightarrow CoA + citrate$

Ordered sequential mechanism - oxaloacetate adds first

His274, Asp375, and His320 general acid-base catalysis

Rate determining step - formation of enol form of acetyl-CoA

Formation of enzyme-bound citryl-CoA

Hydrolysis of citryl-CoA to citrate and CoA $\Delta G^{\circ} = -31.5 \text{ kJ} \text{mol}^{-1}$

Stereospecific Aldol-Claisen condensation at the si face

Aconitase

citrate \Leftrightarrow aconitate \Leftrightarrow isocitrate

Prochiral center

First stage - dehydration reaction (trans elimination)

Second stage - rehydration reaction (stereospecific trans addition)

Asp, His, and Ser catalytic residues

[4Fe-4S] iron sulfur cluster

180° flip of aconitate intermediate

NAD⁺-dependent isocitrate dehydrogenase

isocitrate + NAD⁺ $\rightarrow \alpha$ -ketoglutarate + CO₂ + NADH

First production of CO₂ and NADH

Requires Mn²⁺ or Mg²⁺ cofactor

 α -Ketoglutarate dehydrogenase multienzyme complex

```
\label{eq:action} \begin{split} &\alpha\text{-ketoglutarate} + acetyl\text{-CoA} + NAD^{+} \\ & \longrightarrow succinyl\text{-CoA} + CO_2 + NADH + H^{+} \end{split}
```

α-ketoglutarate dehydrogenase (E₁)
dihydrolipoyl transsuccinylase (E₂)
dihydrolipoyl dehydrogenase (E₃)

Similar to pyruvate dehydrogenase complex (2-keto-acid dehydrogenase family)

No covalent modification system

Formation of "high-energy" thioester

Succinyl-CoA synthetase (succinate thiokinase)

succinyl-CoA + GDP + $P_i \rightarrow$ succinate + CoA + GTP

Phosphoryl-enzyme intermediate (OPO₃-His)

Successive synthesis of "high-energy" compounds:

succinyl phosphate 3-phosphohistidine residue GTP

Up to this point:

one acetyl \rightarrow 2CO₂ + 2NADH + GTP(ATP)

Succinate dehydrogenase

succinate + FAD \rightarrow fumarate + FADH₂

Stereospecific

Bound to inner-mitochondrial membrane (only citric acid cycle enzyme membrane bound)

FAD covalently linked to enzyme, reoxidized by electron transport chain

Fumarase

fumarate + $H_2O \rightarrow S$ -malate

Hydration reaction

Two possible mechanisms:

carbocation intermediate

carbanion intermediate - established by ¹⁸O exchange experiments, product release is rate determining step

Malate dehydrogenase

S-malate + NAD⁺ \rightarrow oxaloacetate + NADH + H⁺

 $\Delta G^{\circ} = +29.7 \text{ kJ} \cdot \text{mol}^{-1}$

[oxaloacetate] kept low (high ΔG° ' of citrate synthase drives cycle 1st reaction)

Oxidation-reduction reaction

Similar to lactate dehydrogenase and alcohol dehydrogenase

Integration of the citric acid cycle

One cycle:

- 1. One acetyl oxidized to two CO_2 (8 e⁻ process)
- 2. Three NAD⁺ reduced to NADH (6 e^{-})
- 3. One FAD reduced to $FADH_2$ (2 e⁻)
- 4. One GTP (ATP) produced

Electrons pass to the electron transport chain

 $O_2 \rightarrow H_2O (4 e^- \text{ process})$ $NADH \cong 3 \text{ ATP}$ $FADH_2 \cong 2 \text{ ATP}$ one cycle $\cong 12 \text{ ATP}$

These are approximate (maximum) number of ATP as we shall soon see

Regulation of the Citric Acid Cycle

Rate-controlling enzymes:

citrate synthase isocitrate dehydrogenase α-ketoglutarate dehydrogenase

Dioxygen consumption, NADH reoxidation, and ATP production are tightly coupled

Regulatory control:

1. Substrate availability - oxaloacetate stimulates citrate synthase

2. Product inhibition - citrate competes with oxaloacetate for citrate synthase, NADH inhibits isocitrate dehydrogenase and α -ketoglutarate dehydrogenase, succinyl-CoA inhibits α -ketoglutarate dehydrogenase

3. Competitive feedback inhibition - NADH inhibits citrate synthase, succinyl-CoA competes with acetyl-CoA in citrate synthase reaction

Most crucial regulators:

substrates -acetyl-CoA and oxaloacetate product - NADH

Regulation of the Citric Acid Cycle

Allosteric control of cycle enzymes:

isocitrate dehydrogenase α-ketoglutarate dehydrogenase pyruvate dehydrogenase phosphatase

ADP - allosteric activator of isocitrate dehydrogenase

ATP - inhibits isocitrate dehydrogenase

 Ca^{2+} - activates pyruvate dehydrogenase phosphatase, isocitrate dehydrogenase, α -ketoglutarate dehydrogenase

The Amphibolic Nature of the Citric Acid Cycle

Amphibolic - both anabolic and catabolic

intermediates must be replaced

Pathways that utilize citric acid cycle intermediates:

- 1. Glucose biosynthesis (gluconeogenesis) oxaloacetate (transported as malate)
- 2. Lipid biosynthesis acetyl-CoA from ATP-citrate lyase ATP + citrate + CoA \Leftrightarrow ADP + P_i + oxaloacetate + acetyl-CoA
- 3. Amino acid biosynthesis α-ketoglutarate (glutamate dehydrogenase or transamination) and oxaloacetate (transamination)
- 4. Porphyrin biosynthesis succinyl-CoA

The Amphibolic Nature of the Citric Acid Cycle

Reactions that replenish citric acid cycle intermediates:

anaplerotic "filling up" reactions

Pyruvate carboxylase

Pyruvate + CO_2 + ATP + $H_2O \Leftrightarrow$

 $oxaloacetate + ADP + P_i$

Oxidation of fatty acids - succinyl-CoA Breakdown of amino acids (Ile, Met, Val) - succinyl-CoA Transamination and deamination of amino acids - α ketoglutarate and oxaloacetate