Elementary Reactions

$$
\mathrm{A} \rightarrow \mathrm{P} \quad \mathrm{~A} \rightarrow \mathrm{I}_{1} \rightarrow \mathrm{I}_{2} \rightarrow \mathrm{P}
$$

$$
\begin{gathered}
\text { Rate equation } \\
\mathrm{aA}+\mathrm{bB}+\ldots+\mathrm{zZ} \rightarrow \mathrm{P} \\
\text { rate }=\mathrm{k}[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}} \ldots[\mathrm{Z}]^{\mathrm{z}} \\
\mathrm{k} \text { is rate constant }
\end{gathered}
$$

Order is the sum of the exponents

For elementary reactions, order is the molecularity

Rates of reaction

$$
v=-\frac{d[\mathrm{~A}]}{d t}=\frac{d[\mathrm{P}]}{d t}
$$

Zero order

$$
\begin{aligned}
-\frac{d[\mathrm{~A}]}{d t} & =k_{0} & & {[\mathrm{~A}]=[\mathrm{A}]_{0}-\mathrm{k}_{0} \mathrm{t} } \\
\mathrm{k}_{0} & =\mathrm{M} \mathrm{~s}^{-1} & & t_{1 / 2}
\end{aligned}=\frac{[\mathrm{A}]_{0}}{2 k_{0}}, ~ l
$$

First order

$$
\begin{aligned}
-\frac{d[\mathrm{~A}]}{d t} & =k_{1}[\mathrm{~A}] & & {[\mathrm{A}]=[\mathrm{A}]_{0} e^{-k_{1} t} } \\
\mathrm{k}_{1} & =\mathrm{s}^{-1} & & t_{1 / 2}=\frac{\ln 2}{k_{1}}
\end{aligned}
$$

$$
\mathrm{A} \Leftrightarrow \mathrm{~B}
$$

$$
-\frac{d[\mathrm{~A}]}{d t}=k_{1}[\mathrm{~A}]-k_{-1}[\mathrm{~B}]
$$

$$
\text { at equilibrium, rate }=0
$$

$$
\frac{[\mathrm{B}]_{e q}}{[\mathrm{~A}]_{e q}}=\frac{k_{1}}{k_{-1}}=K_{e q}
$$

Second order

$$
\begin{gathered}
2 \mathrm{~A} \rightarrow \mathrm{~B} \\
-\frac{1}{2} \frac{d[\mathrm{~A}]}{d t}=k_{2}[\mathrm{~A}]^{2} \quad \frac{1}{[\mathrm{~A}]}=\frac{1}{[\mathrm{~A}]_{0}}+2 k_{2} t \\
\mathrm{k}_{2}=\mathrm{M}^{-1} \mathrm{~s}^{-1} \quad t_{1 / 2}=\frac{1}{k_{2}[\mathrm{~A}]_{0}} \\
\mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C} \\
-\frac{d[\mathrm{~A}]}{d t}=k_{2}[\mathrm{~A}][\mathrm{B}] \quad[\mathrm{B}]=[\mathrm{A}] \frac{[\mathrm{B}]_{0}}{[\mathrm{~A}]_{0}} e^{-k_{2}\left([\mathrm{~B}]_{0}-[\mathrm{A}]_{0}\right)}
\end{gathered}
$$

Graph methods
First order reactions

$$
\begin{gathered}
\ln [\mathrm{A}] \text { vs } \mathrm{t} \\
\text { initial rate vs }[\mathrm{A}]_{0} \\
\text { slope }=-\mathrm{k}_{1} \text { or } \mathrm{k}_{1}
\end{gathered}
$$

Second order reactions
$[\mathrm{A}]^{-1}$ vs t initial rate vs $[\mathrm{A}]_{0}{ }^{2}$
slope $=2 \mathrm{k}_{2}$

Michaelis-Menten Equation

Sucrose $+\mathrm{H}_{2} \mathrm{O} \rightarrow$ glucose + fructose

$$
\begin{aligned}
\mathbf{E}+\mathbf{S} & \stackrel{\mathbf{k}_{-\mathbf{1}}}{\stackrel{\mathbf{k}_{\mathbf{1}}}{\Longrightarrow}} \mathbf{E S} \xrightarrow{\mathbf{k}_{\mathbf{2}}} \mathbf{P}+\mathbf{E} \\
& v=\frac{d[\mathrm{P}]}{d t}=k_{2}[\mathrm{ES}] \\
\frac{d[\mathrm{ES}]}{d t}= & k_{1}[\mathrm{E}][\mathrm{S}]-k_{-1}[\mathrm{ES}]-k_{2}[\mathrm{ES}]
\end{aligned}
$$

Need to make assumptions to solve this:

1. Assume equilibrium

$$
K_{S}=\frac{k_{-1}}{k_{1}}=\frac{[\mathrm{E}][\mathrm{S}]}{[\mathrm{ES}]}
$$

2. Assume steady state

$$
\frac{d[\mathrm{ES}]}{d t}=0
$$

$$
[\mathrm{E}]_{\mathrm{T}}=[\mathrm{E}]+[\mathrm{ES}]
$$

$$
v_{0}=k_{2}[\mathrm{ES}]=\frac{k_{2}[\mathrm{E}]_{\mathrm{T}}[\mathrm{~S}]}{K_{m}+[\mathrm{S}]}
$$

$$
\text { where } K_{m}=\frac{k_{-1}+k_{2}}{k_{1}}
$$

$$
\text { define } V_{\max }=k_{2}[E]_{T}
$$

$$
v_{0}=\frac{V_{\max }[\mathrm{S}]}{K_{m}+[\mathrm{S}]}
$$

Reversible Reactions

$$
\begin{gathered}
\mathbf{E}+\mathbf{S} \xlongequal[\mathbf{k}_{-\mathbf{1}}]{\stackrel{\mathbf{k}_{\mathbf{1}}}{=}} \mathbf{E S} \xlongequal[\mathbf{k}_{-\mathbf{2}}]{\mathbf{k}_{\mathbf{2}}} \mathbf{P}+\mathbf{E} \\
v=\frac{\frac{V_{\max }^{f}[\mathrm{~S}]}{K_{m}^{\mathrm{S}}}-\frac{V_{\max }^{r}[\mathrm{P}]}{K_{m}^{\mathrm{P}}}}{1+\frac{[\mathrm{S}]}{K_{m}^{\mathrm{S}}}+\frac{[\mathrm{P}]}{K_{m}^{\mathrm{P}}}} \\
\text { where } \mathrm{V}^{\mathrm{f}} \mathrm{max}=\mathrm{k}_{2}[\mathrm{E}]_{\mathrm{T}} \quad \mathrm{~V}_{\text {max }}^{\mathrm{r}}=\mathrm{k}_{-1}[\mathrm{E}]_{\mathrm{T}} \\
K_{m}^{\mathrm{S}}=\frac{k_{-1}+k_{2}}{k_{1}} \quad K_{m}^{\mathrm{P}}=\frac{k_{-1}+k_{2}}{k_{-2}} \\
{[\mathrm{E}]_{\mathrm{T}}=[\mathrm{E}]+[\mathrm{ES}]}
\end{gathered}
$$

Haldane Relationship
Kinetic parameters of a reversible enzymatically catalyzed reaction are related by the equilibrium constant

$$
\text { set } \mathrm{v}=0 \text { and solve: }
$$

$$
K_{\mathrm{eq}}=\frac{[\mathrm{P}]}{[\mathrm{S}]}=\frac{V_{\max }^{f} K_{m}^{\mathrm{P}}}{V_{\max }^{\mathrm{r}} K_{m}^{\mathrm{S}}}
$$

Bisubstrate Reactions

$$
\mathbf{A}+\mathbf{B} \stackrel{\mathbf{E}}{\rightleftharpoons} \mathbf{P}+\mathbf{Q}
$$

Almost all are transferase (transfer of functional group)

$$
\underset{\text { where } \mathrm{A}}{\mathbf{P}-\mathbf{X}+\mathbf{B}-\mathrm{X} \text { and } \mathrm{Q}=\mathrm{B}-\mathrm{X}} \underset{\mathbf{E}}{\mathbf{E}} \mathbf{P}+\mathbf{B}-\mathbf{X}
$$

or oxidation-reduction (transfer of reducing equivalents) reactions

Terminology:

substrates - A, B, C in order they add to enzyme products - $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ in order they leave enzyme stable enzyme forms - E, F, G

Uni - one
Bi - two
Ter - three
Quad - four
Applies to naming reactions type - i.e., one S and two P
Uni Bi reaction

Cleland Notation

Sequential - Single Displacement reaction

transfer of functional group directly from
$\mathrm{A}(=\mathrm{P}-\mathrm{X})$ to B yielding P and $\mathrm{Q}(=\mathrm{B}-\mathrm{X})$

Ordered
NAD^{+}- and NADP^{+}-requiring dehydrogenases
Random
dehydrogenases and kinases

Ping Pong - Double Displacement reaction
transfer of functional group to enzyme and release of first product
then transfer of bound functional group from enzyme to second substrate to release second product chymotrypsin, transaminases, some flavoenzymes

Isotope Exchange

May be used to distinguish between single- (Sequential) and double-displacement (Ping Pong) reactions

Sequential reactions do not exchange isotope labels

Ping Pong reactions are capable of exchanging an isotope from the first product P back to the first substrate A in the absence of the second substrate

$$
\mathbf{P}-\mathbf{X}+\mathbf{B} \stackrel{E}{\rightleftharpoons} P+\mathbf{B}-\mathbf{X}
$$

where $\mathrm{A}=\mathrm{P}-\mathrm{X}, \mathrm{Q}=\mathrm{B}-\mathrm{X}$ and X is the transferred group
Foward reaction $\quad \mathrm{E}+\mathrm{P}-\mathrm{X} \rightarrow \mathrm{E}-\mathrm{X}+\mathrm{P}$
Reverse reaction $\mathrm{E}-\mathrm{X}+\mathrm{P}^{*} \rightarrow \mathrm{E}+\mathrm{P}^{*}-\mathrm{X}$

Compare sucrose phosphorylase with maltose phosphorylase:

Glucose-fructose + phosphate (sucrose)

Glucose-1-phosphate + fructose

Glucose-fructose + fructose* (sucrose)

Glucose-fructose* + fructose

Glucose-1-phosphate + phosphate* (sucrose)

Glucose-1-phosphate* + phosphate

Glucose-glucose + phosphate
(maltose)
E
Glucose-1-phosphate + glucose

